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Abstract We study classical and quantum mechanics of vortex-vonex and vortex-mtivortex 
pairs in two-dimensional superconductors. The possibility of obsemiug quantum states of 
pancake VO&PS in high-temperature superconductors is discussed. 

1. Introduction 

The dynamics of the magnetic flux in superconductors is of great interest for both 
fundamental physics and applications: The hopping of vortices between pinning centres 
and the annihilation of vortex-antivortex pairs in conventional superconductors has been 
beautifully visualized by the electron holography methods 111. These experiments raise 
questions about the trajectory of the vortex pair and the characteristic time of the annihilation. 
Our work is in part motivated by the desire to give a rigorous mathematical description of 
these processes. Another part of our motivation comes from the observation [2-15] that 
vortices in high-temperature superconductors can behave as quantum objects. If one recalls 
that a vortex is formed by the coherent motion of a macroscopic number of electrons, this 
seems quite exotic. Nevertheless, a number of experiments on low-temperature magnetic 
relaxation [2-7] have been interpreted in terqs of vortices tunnelling through pinning 
barriers. Based upon experimental data, it has been also argued that quantum fluctuations 
of pancake. vortices contribute to the thermodynamics [SI and magnetization 191 of high-l; 
materials. It is, therefore, not out of the question to look for quantum levels of vortex pairs. 
If found in experiment, they would provide the most direct evidence of quantum behaviour 
of vortices. 

In this paper we shall limit our consideration to two dimensions (ZD), where the vortices 
behave as particles interacting via a In r potential. The problem of two interacting flux 
lines is of a different level of complexity and will not be addressed here. As far as the 
classical dynamics is concerned, our results can be applied to thin films of conventional 
superconductors and to pancake vortices of CuOz layers of high-T, materials. The minimal 
separation at which the picture of independent vortices makes sense is the size of the 
vortex core, that is, the coherence length c. For Cu02 layers this picture also breaks down 
above some critical separation when the interaction between pancake vortices belonging 
to different planes becomes important. For extremely anisotropic crystals, however, e.g., 
Bi- or TI-based copper oxides, a pair of'interacting 2D vortices belonging to one plane 
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should be a good approximation. Note that the values o f t  in the directions perpendicular 
and parallel to CuOz layers are quite different. In this paper, 6 should be everywhere 
understood as the coherence length in the CuOz plane (which is usually denoted as tab ) .  
In high-T, superconductors it is of the order of a few lattice spacings. Because of that the 
pancake vortices are really microscopic in nature. Even vortices of that size, however, are 
formed by the coherent motion of a large number of electrons. Thus, any quantum physics 
associated with such an object must be of fundamental interest. 

To consider the classical dynamics of vortices one should account for all forces acting 
on them. These are the force of their interaction, the friction force, and the Magnus force. 
The motion of the vortex-vortex pair is different from the motion of the vortex-antivortex 
pair. The solutions are also different for free vortices and for the case when the position 
of one of the vortices is fixed by a strong pinning centie. The important parameter is the 
ratio of the friction force to the Magnus force. Both are proportional to the velocity of 
the vortex, so that the ratio is a constant which depends on the material and temperature. 
The motion of the pair is different in the overdamped regime and in the superclean (or 
Hall) regime, when the Magnus force dominates. For quantum dynamics of vortices the 
superclean regime is of major interest. As will be shown below, there are well defined 
energy levels of vortex pairs in this regime. The strength of the Magnus force, as compared 
to the force of friction on the moving vortex, is determined by the ratio of the transverse 
and longitudinal resistivity. In conventional superconductors it is small, indicating that the 
motion of vortices is dominated by friction. However, both theory [16] and experiment 
[17] suggest that this ratio grows dramatically as temperature is lowered. Dissipation of 
the vortex motion is due to the scattering of quasiparticles within the vortex core. At low 
temperature, the finite spacing of the core levels can strongly reduce dissipation and make 
the Magnus force the main force in the problem. This should happen [16] when the mean 
free path of a quasiparticle becomes large compared to (EF/A)f, where 6~ is the Fermi 
energy, and A is the superconducting gap. Due to small E F ,  large A, and small f ,  high-Tc 
superconductors are l ie ly  to enter the superclean regime at T << Tc [17, 181. 

The paper is organized as follows. The classical motion of vortex-vortex pairs is 
studied in section 2. Section 3 deals with the classical mechanics of vortex-antivortex 
pairs. Quantum levels of the pairs are considered in section 4. The possibility of observing 
the effects studied in this paper is discussed in section 5. 
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2. Classical mechanics of vortex-vortex pairs 

2.1. Free vortices 

Consider a thin superconducting layer of thickness d, normal to the z direction. We shall 
start with a problem of two classical vortices, in the absence of pinning and macroscopic 
current, separated by a distance r = I T ,  - rzl. At r large compared to the correlation length 

and up to some limiting value r,,,,,, the vortices repel each other via the potential 

where A = ( 1 n , c ~ / 4 r r e ~ n , ~ ) ' 1 ~  is the bulk penetration length (ns being the bulk concentration 
of superconducting electrons) and @O is the flux quantum. For a thin film, r,,,,, = A2/d, 
while for a layered superconductor it is determined by the strength of the interlayer coupling. 
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The vortices are also subject to the Magnus force [19-221, 

(2) 
n,ed . F, = - r ix@o 

C 

and the force of friction, 
f; = -qd+;. (3)  

Here @o = (ch/2e) i  is the vector normal to the layer whose length is the flux quantum, 
and i = 1.2 numerates the vortices. Formulas (1)-(3) should also apply to pancake vortices 
in the CuO2 planes of high-T, superconductors. In this case me should be understood as 
the effective mass of an electron in the Cu02 plane, usually denoted as mob. The presence 
in these formulas of a loosely defined parameter 2 (the ‘length’ of the vortex) should not 
concern us here, since d enters only through the combination n,d which is a two-dimensional 
‘sheet’ concentration of electrons. 

The inertial mass of the vortex, m,, is of the order of m,kpd, where kF is the Fermi 
momentum of electrons. We shall assume that m, can be neglected and will check this 
later. Then the equations of motion become the conditions that the sum of all forces on 
each vortex is zero. This gives 

The convenient variables are the radius vector connecting the vortices and the coordinate 
of the centre of mass of the pair, 

In terms of these variables, equations (4) produce two independent equations for T and R 

The second of these equations implies that the centre of mass of the two vortices remains at 
rest, R = 0. Writing the first equation in polar coordinates, r and 4, one finds the solution: 

Here ro is the arbitrary initial separation of vortices and y = q/xfin,  is the dimensionless 
strength of friction relative to the Magnus force. Thus, two classical vortices orbit each 
other, while the distance between them is growing with time due to friction (figure 1 ) .  The 
relative speed goes down with the distance between the vortices as 

One way to estimate y is to use the BardeenStephen formula for q, q = @0HC2/p .2 ,  
where p,, is the normal state resistivity. Choosing the latter in the form pn = m,/e2n,r, 
with r being the quasiparticle’s scattering time, one obtains 

When deriving this formula, we have also used the relation Hn = @ 0 / 2 x $ ~ .  Note that 
both limits y << 1 and y >> 1 can be obtained for realistic parameter values. 
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Figure 1. Classical motion of the vortex-vortex pair. 

Let us now go back to the question of the inertial mass of the vortex. Comparing the 
Magnus force with the centripetal force due to inertia, m:/r, one finds that the latter can be 
neglected if r is large compared to the Fermi wavelength of electrons, A p  = 2n f kp, that 
is, for any physically meaningful separation of vortices. 

Figure 2. Classical motion of a vortex in the field of a pinned vortex. 

2.2. Vortex in thefeld of a pinned vortex 

We shall assume now that the position of one of the vortices is fixed by strong pining. We 
shall also assume that the pinning potential is short ranged and does not stretch beyond the 
core of the pinned vortex. In this case, the pinning does not affect the free vortex and the 
dynamics of the pair reduces to the equation of motion for a free vortex in the field of a 
pinned vortex, 

The solution of this equation shows that the vortex is orbiting the pinning centre at a speed 
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with the distance from the centre, r ,  growing as 

One may notice the difference by a factor of two from the equivalent formulas for free 
vortices. This motion is illustrated in figure 2. 

3. Classical mechanics of vortex-antivortex pairs 

3.1. Free pair 

We shall now turn to the classical mechanics of the vortex-antivortex pair. Let us begin 
with a free pair. From the mathematical point of view, the difference from the vortex-voTtex 
pair appears in the sign of the logarithmic interaction; vortex and antivortex attract each 
other. The sign of the Magnus force also depends on the direction of the magnetic flux and 
is different for the vortex and the antivortex. Correspondingly, 

and equations (4) must be rewritten as 

. . _, 

where we have preserved the orientation of @o in the positive z direction. In terms of r, 
R, and y. these equations are equivalent to 

Equations (15) suggest that the radius vector r,  connecting the pair, preserves its orientation 
in space, while the centre of mass is moving in the direction normal to T at a speed 

R V =  
2m,r( l+ y 2 )  

The separation decreases according to 

The trajectory of the pair is shown in figure 3. In the limit of zero friction ( y  = 0) 
the separation of the pair is constant; the vortex and antivortex move parallel to each other 
at a speed V = R/2m,r, which is uniquely determined by the separation. With a non- 
zero friction, trajectories of the vortex and antivortex are non-parallel straight lines which 
intersect at some finite distance. (17) allows us to obtain the annihilation time 

It has a minimum, to = mer,'/h, at y = 1. This minimal value is of the order of s 
for a 100 A separation, and lo-'' s for a 1000 A separation. The time needed for the 
annihilation increases in both underdamped ( y  << 1 )  and overdamped ( y  >> 1) limits. This 
is easy to understand if one notices that at small y the pair moves a long way to the point 
of annihilation, while at large y the vortex displacement is small, but the motion is slow. 
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Vortex . - 
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. - . 
Antivortex 

(a1 ( b )  
Figure 3. Clasicul motion of the vortex-antivortex pair. 

3.2. Antivortex in tkejield of a pinned vortex 

This problem is similar to that for the vortex in the field of a pinned vortex. The only 
difference is in the sign of the interaction. Consequently, the equation of motion is 

n,e . @: r 
- rxQo  + vi. + -- = 0. 

C 4n2h2 r2 
The solution in polar coordinates is 

with the same equation (1 1) for the orbital speed. The antivortex approaches the pinned 
vortex on a spiral trajectory shown in figure 4. The annihilation time, t, = (m.ri/f i)(y + 
y - l ) ,  is two times longer than for a free pair. 

Figure 4. Classical motion of an antivortex in the field of a pinned voLfex 

4. Quantum mechanics of vortex pairs 

Quantum levels of the vortex pair make sense only in the limit of a very weak friction. 
This limit corresponds to a superclean regime which high-T, superconductors are likely to 
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enter at low temperatures (see the introduction). In this section we shall concentrate on 
a one-body problem of a free vortex (or antivortex) in the field of a pinned vortex. The 
quantum mechanics of our model in the absence of friction can he obtained if one notices 
that the effect of the Magnus force on a vortex is equivalent to the effect of a constant 
magnetic field, 

(21) 

on a particle of charge e. Thus, the Hamiltonian of a vortex (antivortex) in the field of a 
pinned vortex can be written as 

Here the sign must be taken as minus for a vortex and plus for an antivortex; the effective 
vector potential is given by 

Ac,, = - % T X B , f J .  (23) 
If one drops the second term in equation (22), the problem becomes the one of a single 

free vortex (antivortex) subject to a Magnus force. This problem is equivalent to the problem 
of a free electron (positron).in the magnetic field. The eigenvalues of the ‘kinetic’ term are 
uniformly spaced in energy by fio,,y, where wej, = eB,ff/m,c is the effective cyclotron 
frequency. The limit of m.+O is equivalent to a very high field in the problem of electron. 
Consequently, the value of fiw,,f can easily be of the order of the Fermi energy. This means 
that for the problem of a free vortex (antivortex) only the lowest Landau level (LLL) is 
of interest. The corresponding wave functions are degenerate eigenfunctions of the angular 
momentum, 

zm exp (-1z1*/41*) (24) 
with m = 0,1,2, ___, where we have introduced z = x + iy and the effective ‘magnetic’ 
length, 

For a monolayer film, xlz is the area per electron; 1, therefore, is the smallest length in the 
problem. 

Consider now the full Hamiltonian (22). This problem, though for a different potential, 
is again well known from the problem of an electron in a strong magnetic field. Since the 
interaction depends only on r,  the wave functions again can be chosen as eigenfunctions 
of the total angular momentum equation (24). As in the previous problem, the additional 
quantum number, that numerates Landau levels, should be taken at its lowest value because 
of a huge energy gap between the states evolving from different Landau levels. The 
procedure called ‘the projection of the potential onto the LLL‘ [23] is briefly outlined 
below. Let f(z) be the polynomial part of the wave function, +(z) = f(z)exp(-l~1*/41~), 
and the potential can be expressed as V(z*, z). Then the eigenvalues of the system can be 
found from the projected form of the time-independent Schrodinger equation, 

where the potential is considered as a power series in which all factors of z* are placed to 
the left of all z and then replaced by 2 a/az. 
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Let us now apply this procedure to f(z) = zm and 

Substituting these functions into equation (26) and performing the differentiation over z ,  we 
obtain for the eigenvalues 

1 
E, = - 

m! c,(n + m) 1. 

Further progress can be made with the help of the formula 

Its substitution into equation (28). with account of equation (27). yields 

where we have chosen x = r2/21'. 
Equation (30) provides the general expression for the energy levels of the vortex 

(antivortex) in an arbitrary potential V(r ) .  According to equation (24). the size of the 
orbit corresponding to the quantum number m is given by 

(r') = ( 1 ~ 1 ' )  = ~ ( m  + 1)~'. (3 1) 

Our approximation holds only for orbits which are much greater than the size of the vortex 
core, 5. Recalling that 1 is the smallest size in the problem, it is clear that only large m 
make sense from the physical point of view. In this case equation (30) can be simplified. 
Applying the Stirling formula to m!, 

m !  = mm e-"'(2xm)*/* (32) 
we get 

Let us now choose the new variable of integration, 8, which is related to x by x = m(l+S).  
Then equation (33) becomes 

We shall assume that the characteristic scale of the potential is much bigger than 1. Then it 
is easy to see that only small 6 con'uibute to the integral. Pulling V(m)  out of the integral 
and expanding the logarithm in the exponent we obtain 

m 112 
E,,, = (2n;) V ( m )  Sm dS 

-1 
(35) 

At large m, -& < S < f i  effectively contribute to the integral. Consequently, the 
lower l i t  of integration can be safely changed to -CO. This yields the trivial answer for 
large m 

(36) E, = V(r =I&). = 
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Formula (36) can be easily understood from the quasiclassical point of view. In the 
absence of friction, equations of motion for a vortex subject to the Magnus force and an 
arbitrary potential V can be written in the form 

where x and y are components of T .  These equations are equivalent to the Hamiltonian 
equations of motion [13, 141, q = aV/ap, p =~-aV/aq, if one chooses 

q = x  p = zhn,v dy. (38) 
Thus, x and y play the role of generalized coordinate and momentum for the vortex. The 
next step is to write the quasiclassical quantization condition: 

pdq = &Em. + (39) 

Substituting here q and p from equation (38) and integrating over a circular orbit of radius 
r ,  we obtain 

2 
5 = m .  
212 

This relation must hold for large quasiclassical orbits, that is, for large m. From here one 
immediately obtains the expression (36) for the energy levels. 

Going back to our problem of the vortex (antivortex) in the field of a pinned vortex, 
the question of interest is the distance between the mth and the (m+l)th levels. For the 
logarithmic potential of equation (1) it is given by 

where 

Quantum levels of the vortex and the antivortex in the field of a pinned vortex are 
schematically shown in figure 5. 

In the above discussion of quantum dynamics we have completely neglected friction, 
that is, the interaction of vortices with the dissipative background. A rigorous formulation of 
this problem is quite difficult since the dissipation of the vortex motion is poorly understood 
even at the classical level. Meantime, the observation of quantum levels is only possible 
if their width is small compared to the distance between the levels. One way to estimate 
the linewidth for the levels of a vortex-antivortex pair is to assume that for quasiclassical 
orbits it cannot exceed the inverse classical time, At,,,, of the transition between the mth 
and the (mk1)th orbits, which is finite due to friction. According to equations (U), (20). 
and (40)-(42), this time equals 

Defining the relative linewidth as rm = h/AE,,, At,,,, we obtain 
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E 

\ 

m = 2  

(a1 

7 

f 
I 

I b) 
Figure 5. Schematic picture of quantum levels: (a) vortex in he Inr potential, (b) antivortex 
in h e  Inr potential. 

Thus, the relative linewidth is likely to be small for small y ,  y <( l / m .  This condition 
is based upon the classical picture of the dissipation. Due to the quantization of levels of 
normal electrons inside the vortex core the real condition can be softer. 

5. Discussion 

The results of previous sections are formally valid for strictly two-dimensional 
superconductors, that is, for very thin films or monatomic layers. Let us now discuss 
the possibility of the observation of quantum levels of pancake vortices in high-T, 
superconductors. The approximation employed in this paper is based upon logarithmic 
interaction between the pancakes within one CuOz layer; the interaction between vortices 
belonging to different layers has been neglected. Meantime, when considering large 
distances, this interaction results in the formation of a vortex line or a closed vortex loop. 
It has been demonstrated 124-281 that, due to the Josephson interaction between the layers, 
at r - d(Me/m, ) l /Z  (where Me and m, are electron effective masses in the c-direction 
and in ab plane, correspondingly) linear corrections to the logarithmic interaction become 
important. In extremely anisotropic high-T, oxides, like Bi- and TI-based materials, the 
characteristic length of the crossover from a 2D to a 3D behaviour should be of the order 
of a few hundred ingstroms. 

Another concern is dissipation of the vortex motion. As .has been mentioned in the 
introduction, at low temperature high-T, materials are likely to enter the superclean regime 
where friction is small compared to other forces. This corresponds tothe limit y << 1 which 
is needed for the small width of the levels. The typical value of the sheet concentration 
of electrons in CuOz layers is n,d % lot4 which gives I of the order of a few A. 
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Correspondingly, the typical value of the energy constant Eo in equation (42) must be of 
the order of 10' K. Reasonable values of m >> 1 are m - 50. This should correspond 
to the size of the orbit. r = Z 6 ,  below lOOA, that is. greater than h but still in the 
range of the logarithmic interaction. For such m the spacing between the levels must be of 
the order of a few kelvin. The temperature, of course, should be much lower, to suppress 
thermal transitions between the levels. The lifetime of these levels should be of the order of 
lO-"s/y, that is, about s for y - lo-'. The levels of that kind fall in the microwave 
range of frequencies. The most direct way to observe them would be to study the absorption 
and radiation spectra of a superconductor in that range. The power of the radiation can be 
increased in the case of a massive annihilation of vortices and antivortices, produced by, 
e.g., the reversal of the magnetic field. One can also look for the discrete maxima in the 
noise spectrum of a superconductor. 

In conclusion, we would like to note that the possibility of observing vortex levels is 
not at all obvious. Although we have presented heuristic arguments in favour of the narrow 
width of the levels in a superclean regime, the effect of the dissipation on quantum dynamics 
of vortices remains largely unknown. We believe, however, that such a possibility must be 
pointed out because of its fundamental importance for quantum physics. 
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